6 Devices That’ll Make Moving Heavy Objects Post-Collapse Doable

lifting a heavy weight

If you didn't have the aid of an electric winch or a hefty truck, how would you move big loads? It may be difficult, but it's definitely possible. During SHTF you'll need other solutions. Chances are if you need to move big loads, it'll be one of the six methods below.

Friction Reducing Slides
When you want to move a couch from one side of a room to another, aside from being very heavy, the legs of the couch may either dig into a solid floor or catch on the surface of the carpet. When rough surfaces encounter each other while in motion, drag or “friction”, it takes more energy to move the objects.

Friction reducing slides have two basic parts. The upper part sticks to the bottom of the object while the bottom part facing the floor is very smooth. No matter whether the objects is being moved across linoleum, a deep pile carpet, or some other surface, the slider will reduce friction and make it much easier to move the object. Even though friction reducing slides will not reduce drag as much as wheels, they help moving furniture or other heavy items around a smaller area.

Pulleys

Pulleys are used to lift heavy weights vertically. A basic pulley system requires rope, a wheel with a groove in it for the rope to sit in, and an area to suspend the pulley wheel from. The raised area must be higher up than the total height the object must be raised. Depending on the weight of the object, you can use multiple wheels and ropes.

The basic rules for creating a pulley system are:

The raised area must be strong enough so that it will not crash when the object relies fully on it for support. For example, if you attach a pulley wheel to a weak old wooden beam, it will probably crash to the ground if you try to hoist 2 ton object. Even if the pulley wheel and ropes are strong enough to bear the weight, the suspension frame must also be strong enough.
If you use multiple ropes and wheels, less weight will be applied to each rope. You still cannot exceed the capacity of the ropes and wheels and expect the system to work safely.
For each wheel and rope that you add, you will have to pull double the amount of rope to raise the object the same height as you would with one rope. As a trade-off, you will need half the amount of energy to hoist the object. If you want to hoist 100 pounds with one rope and wheel, for every foot of rope that you pull, the object will raise 1 foot off the ground. Now let’s say you add two wheels and two ropes: you will find it much easier to pull the rope however for each foot of rope that you pull, the object will only move ½ foot off the ground. Depending on the weight of the object and the amount of strength you can apply to the job, you may have to try different numbers of wheels and ropes to get the best outcome.

Gears

As far as building blocks for simple machines that can be used in many weight lifting applications, gears are truly my favorite because they are incredibly versatile and can be easily integrated into other systems.

Even though pulleys are much easier to make, gears have a distinct advantage because they will not slip while you are pulling on the rope.

On the other hand, if the wheel in a pulley system is very worn, gets stuck, or does not turn as freely as it should, you will wind up exerting much more effort than needed.

Essentially a gear is a flat round object (cog) with teeth on it. As long as the teeth of the gear match the same pattern as the teeth on another gear, the rest of the gear can be any diameter or thickness.

As in pulley systems and wheel and axle systems, the radius of each gear in relation to other gears it is meshed with determine how much force is delivered by the system. In the case of gears, larger ones spin slower than smaller ones in the system.

In order to use gears, each one used in the system must be attached to a shaft. Even if you only turn one gear or apply a motor to one gear, they must all still be able to turn on a shaft in order to build force. You can use a single shaft for multiple gears, however you will still need a separate shaft for each gear that must mesh with another gear.

If you’ve ever overloaded a paper shredder or some other gear driven system, then you may already know how frustrating it is when the teeth break on a gear. In a survival situation, there are bound to be times when you make a decision to overload weight lifting equipment or fail to take proper care of it. As versatile is gears are, once they break, there is simply no way to replace the teeth and expect them to mesh properly.

During the process of building simple devices to lift weights using gears, you should focus on using “cage gears” because you will be able to make them as needed, and may also be able to repair them. Basically, a cage gear has two flat disks with spokes between them that function as the teeth. If you make a cage gear from wood, metal,or plastic, you can try replacing the spokes that broke. Even though these gears will take up more space, they offer an important advantage in the sense that they can be repaired to some extent.

It should also be noted that most cage gears on the market mimic spur gear designs. Look into fiberglass and other polymers that may be useful in constructing curved spokes that will replicate other gear types. If you happen to be able to forge metal, there is also a chance that you can still use metal for the gears and fit them into the cage design.

Levers

Levers are some of the most simple lifting aides that you can devise. You can use anything from a branch and a rock to a metal rod and a part of a cinder block.

In order to use the lever, all you have to do is place the fulcrum (a rock or some other object) under the branch or rod, and then make sure the end of the rod is sitting directly under what needs to be pushed out of the way. To move the heavier object, simply push down on the opposite end of the rod.

In the modern world, there are many examples of levers and ways that they can be used. When constructing lever, the position of the weight in relation to the fulcrum and the length of the rod determines how much work will be required to lift the load. There are three “classes” of levers that you should know about. Depending on the weight of the object, you can use different tools based on each class of lever to lift loads.

Screw

The screw is one of the most fascinating machines because it is the only one that can be used to raise liquids from one area to another without enclosing them in a separate container. While an “Archimedes Screw” is traditionally used to generate electricity, it can also be used to lift water from a lower level to a higher one.

To construct an Archimedes Screw, you only need to take a core with a spiral on it, and then enclose that in a column large enough to let water into the apparatus. Next, attach a crank or some other means to turn the screw so that the water will lift as you turn the crank.

In some ways, you can think of a screw as little more than a ramp that has been curled around a core so that the threads are aligned at an angle in relation to the core. In order to lit an object, simply twist the core and the ridges on the screw will either raise or lower the object. You can use pulleys, motors, and gears to turn the screw. When deciding what angle to use for the threads of the screw bear in mind that:

Gentler angles (thread angles with a lesser incline when viewed from the top to bottom of the screw) will require less effort on each turn to lift the object.
The larger the crank used to turn the screw, the faster it will turn, and the faster the object will raise. Just bear in mind that it takes more work to produce a large circular motion than a small one.

Conveyor Belt Ramps

There are bound to be many times when you aren’t going to be interested in lifting objects vertically as much as you will transporting them over somewhat short distances vertically. When you do not have a a vehicle or cart, you will still need some way to push or pull the object from one place to another. If you have ever used a manual treadmill for exercise, then you will already have a good idea about how to make and use a conveyor belt ramp system.

Let’s say you want to move an 800 pound object a distance of several yards. Here are just a few things you will need to consider for the sake of safety and practicality:

You must be able to control the speed of the load as it moves along from Point A to Point B. This includes making sure that you can stop the forward motion of the load and also prevent backwards motion.
The object must remain in proper alignment with the mechanism
Now let’s say you originally planned to simply left the object with a pulley system and then use something like a crane arm to pull the suspended object to a location where you want to set it down. While this method may be efficient and relatively safe, it may not be feasible in a situation where you do not have metal, motors, and other resources to build a proper crane.

By contrast, a conveyor belt ramp system may take longer to build and require more work, it will still get the job done using simple resources such as wooden logs and plastic sheeting.

Unlike a traditional ramp, a conveyor belt ramp will have a belt with two distinctly different surfaces on it. The lower surface should produce as little friction as possible as the belt is dragged over the ramp and logs (that act more or less as pulleys) at each end of the conveyor. The upper surface of the belt should adhere firmly to the object being moved so that it does not slip or fall off.

Depending on how you build the incline, you may also want to add a windlass system so that it takes less effort to move the belt and the object along from one position to the other. If you have to go over longer distances, you will also benefit from making a series of mobile ramps so that you can fit them together as you go along.

Depending on the way in which you have to move your weight, you can probably make use of any one of these methods in order to make your life much, much easier in a SHTF world. One of the best ways, by far, is likely going to be the pulley system, which can be infinitely upgraded with more rope and wheels in order to make even a load larger than a military tank possible to move by one person.

Another great method which you probably make use of pretty regularly is a lever. The only concern there is that the material you're using for your lever needs to be strong enough to handle whatever load you're moving.

For even more methods, check out Survivopedia.

Featured Image via Wikipedia


3 Comments

  1. Just Aguy said:

    Nice to have a review of these items, but one is missing:

    The most important thing is to have friends. Lots of strong friends. And an alcoholic beverage.

    Barns don’t raise themselves…

*

*

Top